The Leishmania ARL-1 and Golgi Traffic

نویسندگان

  • Annelise Sahin
  • Benoît Espiau
  • Emmanuel Tetaud
  • Armelle Cuvillier
  • Lydia Lartigue
  • Audrey Ambit
  • Derrick R. Robinson
  • Gilles Merlin
چکیده

We present here the characterisation of the Leishmania small G protein ADP-Ribosylation Factor-Like protein 1 (ARL-1). The ARL-1 gene is present in one copy per haploid genome and conserved among trypanosomatids. It encodes a protein of 20 kDa, which is equally expressed in the insect promastigote and mammalian amastigote forms of the parasite. ARL-1 localises to the Trans-Golgi Network (TGN); N-terminal myristoylation is essential for TGN localisation. In vivo expression of the LdARL-1/Q74L and LdARL-1/T51N mutants (GTP- and GDP-bound blocked forms respectively) shows that GDP/GTP cycling occurs entirely within the TGN. This is contrary to previous reports in yeast and mammals, where the mutant empty form devoid of nucleotide has been considered as the GDP-blocked form. The dominant-negative empty form mutant LdARL-1/T34N inhibits endocytosis and intracellular trafficking from the TGN to the Lysosome/Multivesicular Tubule and to the acidocalcisomes; these defects are probably related to a mislocalisation of the GRIP domain-containing vesicle tethering factors which cannot be recruited to the TGN by the cytoplasmic LdARL-1/T34N. Thus, besides the functional characterization of a new mutant and a better understanding of ARL-1 GDP/GTP cycling, this work shows that Leishmania ARL-1 is a key component of an essential pathway worth future study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane Traffic: Arl GTPases Get a GRIP on the Golgi

A subset of the golgin family of large coiled-coil proteins have a GRIP domain that mediates their localization to the trans-Golgi. Two recent papers show that the Arl3p and Arl1p small GTPases act sequentially to recruit GRIP domain proteins to the Golgi.

متن کامل

ARL4A acts with GCC185 to modulate Golgi complex organization.

ADP-ribosylation factor-like protein 4A (ARL4A) is a developmentally regulated member of the ARF/ARL GTPase family. The primary structure of ARL4A is very similar to that of other ARF/ARL molecules, but its function remains unclear. The trans-Golgi network golgin GCC185 is required for maintenance of Golgi structure and distinct endosome-to-Golgi transport. We show here that GCC185 acts as a ne...

متن کامل

Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6

Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate ...

متن کامل

Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid.

ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of m...

متن کامل

Localization and Activation of Ras-like GTPases

Small GTP-binding proteins of the Rab and Arf (ADP-ribosylation factor) families play a central role in the membrane trafficking pathways of eukaryotic cells. The prototypical members of the Arf family are Arf1–Arf6 and Sar1, which have well-characterized roles in membrane traffic or cytoskeletal reorganization. However, eukaryotic genomes encode additional proteins, which share the characteris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008